If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+248
We move all terms to the left:
0-(-16t^2+248)=0
We add all the numbers together, and all the variables
-(-16t^2+248)=0
We get rid of parentheses
16t^2-248=0
a = 16; b = 0; c = -248;
Δ = b2-4ac
Δ = 02-4·16·(-248)
Δ = 15872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15872}=\sqrt{256*62}=\sqrt{256}*\sqrt{62}=16\sqrt{62}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{62}}{2*16}=\frac{0-16\sqrt{62}}{32} =-\frac{16\sqrt{62}}{32} =-\frac{\sqrt{62}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{62}}{2*16}=\frac{0+16\sqrt{62}}{32} =\frac{16\sqrt{62}}{32} =\frac{\sqrt{62}}{2} $
| 5.4/2.7=x | | 9/100=x/90 | | 6=(13-6b) | | 6=(13a-6) | | r+7-2=14 | | 6+c=(3+5) | | a-(6-10)=22 | | 9x-5=7x+7(6x+4) | | 130+10•8=c | | 2. -10(x–1)=10–10x | | x=5/9*(140-32) | | 3p-12=2p-7 | | x+0.04x=187 | | 4a–3=9 | | x-3/9=1/10 | | 2(x+5)=3x+12 | | 10/200x100=5 | | 34+23+x=145 | | 3x+7x+20x-145=180 | | 1.75x=x+48 | | 100=20/78=x | | 11.5=-6y+7 | | y+25=3y-5 | | z12z=144 | | (2.45*x)-50=0 | | -6x+10=-8x-4 | | 57=0.05x | | n^2-n-4200=0 | | 11.5=−6y+7 | | 1/3y+3=1/10y. | | c÷4=2 | | 89x-801=4183 |